Законы логики и их истолкование
Страница 8

(~A → B) & (~A → ~B) → A,

если (если не – А, то В) и (если не – А, то не – В), то А.

Законом косвенного доказательства обычно называется и формула:

(~A → (B & ~B)) → A,

если (если не – А, то В и не – В), то А. Пример: «Если из того, что 10 не является четным числом, вытекает, что оно делится и не делится на 2, то 10 – четное число».

Закон Клавия

Закон Клавия характеризует связь импликации и отрицания: «Если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным». [3]

Закон назван именем Клавия – ученого-иезуита, жившего в XVI веке, одного из изобретателей григорианского календаря. Клавий первым обратил внимание на этот закон в своем комментарии к «Геометрии» Евклида. Одну из своих теорем Евклид доказал, выведя из ее допущения, что она является ложной.

Символически закон Клавия представляется формулой:

(~A → A) → A,

если не – А имплицирует А, то верно А.

Например, необходимо доказать утверждение «У трапеции четыре стороны». Отрицание этого утверждения: «Неверно, что у трапеции четыре стороны». Если из этого отрицания удается вывести само утверждение, это будет означать, что оно истинно.

Закон Клавия – один из случаев общей схемы косвенного доказательства: «из отрицания утверждения выводится само это утверждение, оно составляет вместе с отрицанием логическое противоречие; это означает, что отрицание ложно, а верным является само утверждение». [3]

Закон транзитивности

Закон транзитивности в обычном языке можно передать так: «Когда верно, что если первое, то второе, и если второе, то третье, то верно также, что если первое, то третье». [3] Например: «Если дело обстоит так, что с развитием медицины появляется больше возможностей защитить человека от болезней и с увеличением этих возможностей растет средняя продолжительность его жизни, то верно, что с развитием медицины растет средняя продолжительность жизни человека». Иначе говоря, если условием истинности первого является истинность второго и условием истинности второго – истинность третьего, то истинность последнего есть также условие истинности первого.

Символически данный закон представляется формулой:

((A → B) & (B → C)) → (A → C),

если (если А, то В) и (если В, то С), то (если А, то С).

Законы ассоциативности и коммутативности

«Законами ассоциативности называются логические законы, позволяющие по-разному группировать высказывания, соединяемые с помощью «и», «или» и др.». [3]

Логическое сложение (дизъюнкция) и логическое умножение (конъюнкция), как операции сложения и умножения чисел в математике, обладают ассоциативностью. Символически соответствующие законы представляются так:

(A v B) v C ↔ A v (B v C),

(A & B) & C ↔ A & (B & C).

В силу законов ассоциативности в формулах, представляющих конъюнкцию более чем двух высказываний или их дизъюнкцию, можно опускать скобки.

Законами коммутативности называют логические законы, позволяющие менять местами высказывания, связанные «и», «или», «если и только если» и др.

Символически законы коммуникативности для конъюнкции и дизъюнкции записываются так:

(A & B) ↔ (B & A),

А и В тогда и только тогда, когда В и А;

(A v B) ↔ (B v A),

А или В, если и только если В или А.

Например: «Волга – самая длинная река в Европе и Волга впадает в Каспийское море в том и только том случае, если Волга впадает в Каспийское море и Волга является самой длинной рекой в Европе»; «Завтра будет дождь или будет снег, если и только если завтра будет снег и завтра будет дождь».

Существуют важные различия между употреблением слов «и» и «или» в повседневном языке и языке логики. Скажем, утверждение «Он сломал ногу и попал в больницу» очевидно не равносильно высказыванию «Он попал в больницу и сломал ногу».

Страницы: 1 2 3 4 5 6 7 8 9 10