Психологическая интуиция искусственных нейронных сетей
Страница 10

При сравнении экстенсиональных и интенсиональных методов распознавания образов в [47] употребляется следующая аналогия: интенсиональные методы соответствуют левополушарному способу мышления, основанному на знаниях о статических и динамических закономерностях структуры воспринимаемой информации; экстенсиональные же методы соответствуют правополушарному способу мышления, основанному на целостном отображении объектов мира.

1.5 методы восстановления зависимостей

Наиболее широко в данной работе будут рассмотрены методы построения психодиагностических методик на базе интенсиональных методов, основанных на предположениях о классе решающих функций. Поэтому рассмотрим их более подробно.

Основным достоинством методов, основанных на предположении о классе решающих функций является ясность математической постановки задачи распознавания как поиска экстремума. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением данного класса алгоритмов является метод стохастической аппроксимации [94].

В данном классе алгоритмов распознавания образов содержательная формулировка задачи согласно [29] ставится следующим образом:

Имеется некоторое множество наблюдений, которые относятся к p различных классов. Требуется, используя информацию об этих наблюдениях и их классификациях, найти такое правило, с помощью которого можно было бы с минимальным количеством ошибок классифицировать вновь появляющиеся наблюдения.

Наблюдение задается вектором x, а его классификация - числом ().

Таким образом, требуется, имея последовательность из l наблюдений и классификаций построить такое решающее правило , которое с возможно меньшим числом ошибок классифицировало бы новые наблюдения.

Для формализации термина «ошибка» принимается предположение о том, что существует некоторое правило , определяющее для каждого вектора x классификацию , которая называется «истинной». Ошибкой классификации вектора x с помощью правила называется такая классификация, при которой и не совпадают.

Далее предполагается, что в пространстве векторов x существует неизвестная нам вероятностная мера (обозначаемая плотность ). В соответствии с случайно и независимо появляются ситуации x, которые классифицируются с помощью правила . Таким образом определяется обучающая последовательность .

Качество решающего правила записывается в виде , где .

Проблема следовательно заключается в построении решающего правила таким образом, чтобы минимизировать функционал .

Сходной с задачей распознавания образов является задача восстановления регрессии, предпосылки к которой формулируются следующим образом:

Два множества элементов связаны функциональной зависимостью, если каждому элементу x может быть поставлен в соответствие элемент y. Эта зависимость называется функцией, если множество x - векторы, а множество y - скаляры. Однако существуют и такие зависимости, где каждому вектору x ставится в зависимость число y, полученное с помощью случайного испытания, согласно условной плотности . Иначе говоря, каждому x ставится в соответствие закон , согласно которому в случайном испытании реализуется выбор y.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46