Психологическая интуиция искусственных нейронных сетей
Страница 14

,

где - наименьшее собственное значение матрицы .

Как видно, в каждом из этих определений играет роль характеристики «запаса устойчивости» точки минимума.

Кроме в качестве характеристики устойчивости точки минимума используют «нормированный» показатель , называемый обусловленностью точки минимума .

,

.

Можно сказать, что характеризует степень вытянутости линий уровня в окрестности - «овражность» функции (чем больше , тем более «овражный» характер функции).

Наиболее важны в идейном отношении следующие методы безусловной оптимизации: градиентный и Ньютона.

Идея градиентного метода заключается в том, чтобы достигнуть экстремума путем итерационного повторения процедуры последовательных приближений начиная с начального приближения в соответствии с формулой , где - длина шага.

Сходимость данного метода подтверждается в доказательстве следующей теоремы:

Пусть функция дифференцируема на , градиент удовлетворяет условию Липшица:

,

ограничена снизу:

и удовлетворяет условию

.

Тогда в градиентном методе с постоянным шагом градиент стремится к 0: , а функция монотонно убывает: .

Для сильно выпуклых функций доказываются более сильные утверждения о сходимости градиентного метода.

При решении задачи оптимизации методом Ньютона используется подход, заключающийся в итерационном процессе вида

и в нахождении точки экстремума как решения системы из n уравнений с n неизвестными

.

В методе Ньютона производится линеаризация уравнений в точке и решение линеаризованной системы вида

.

Анализ достоинств и недостатков итерационных методов оптимизации можно свести в таблицу (см. табл. 3).

Таблица 3

Достоинства и недостатки итерационных методов оптимизации

Метод

Достоинства

Недостатки

Градиентный

Глобальная сходимость, слабые требования к , простота вычислений

Медленная сходимость, необходимость выбора .

Ньютона

Быстрая сходимость

Локальная сходимость, жесткие требования к , большой объем вычислений.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46