|
|
|
|
|
|
При обучении одного потока используются процедуры подбора шага оптимизации - Increase (поиск шага в сторону возрастания, блок-схему см. на рис. 6), Decrease (поиск шага в сторону убывания, блок-схему см. на рис. 7) и Parabola (поиск оптимального шага по формулам параболического поиска блок-схему см. на рис. 8).
В процедурах используются следующие обозначения:
H( .) - функция оценки сети, накопленная по всему задачнику;
h1, h2, h3 - различные значения величины шага оптимизации, используемые при ее подборе;
W - величина шага в вершину параболы, проходящей через точки (h1, H1), (h2, H2), ( h3, H3). Вычисляется по формуле:
H1, H2, H3 - значения функции ошибки, соответствующие смещению обучаемых параметров по направлению градиента на величину шага h1, h2 è h3.
Условие выпуклости комбинации h1,2,3, H1,2,3 определяется формулой
Если выражение истинно, то условие выпуклости выполнено.
Теперь, рассмотрев алгоритмы обучения сети, перейдем к описанию компонентов, структуры и функционирования сети.
4.5 Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
Условие остановки процесса пошагового исчерпания ошибки может основываться также на оценке полноты функции, заданной нейронной сетью. В случае, если число элементов сети задано (для каждого шага наращивания «поточной» это так) и значения ее параметров ограничены на определенном интервале (это условие выполняется наложением ограничений на параметры сети), данное условие можно сформулировать с использованием константы Липшица. Константа Липшица вектор-функции
в области D определяется как
. Верхняя грань может быть вычислена по области определения D. В качестве оценки расстояния используется евклидова норма.
Для суперпозиции вектор-функций ![]()
.
Для линейной комбинации функций
оценка константы Липшица
.
Константа Липшица для адаптивного сумматора, работающего по формуле
имеет вид
.
Тогда для стандартной комбинации, состоящей из матрицы входных синапсов, сумматора и преобразователя - нейрона с гладкой функцией активации ![]()
.
Для прямой суммы вектор-функций
константа Липшица может быть оценена как
.
Таким образом, для слоя нейронов с подбираемыми преобразователями
, где
- вектор весов синапсов, приходящих на входной сумматор i-го нейрона, а
- функция i-го преобразователя.


